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Abstract A spinor derivation is presented for quasilocal mean-curvature mass of spacelike
2-surfaces in General Relativity. The derivation is based on the Sen-Witten spinor identity
and involves the introduction of novel nonlinear boundary conditions related to the Dirac
current of the spinor at the 2-surface and the tangential flux of a boundary Dirac operator,
as well the use of a spin basis adapted to the mean curvature frame of the 2-surface nor-
mal space. This setting may provide an alternative approach to a positivity proof for mean-
curvature mass based on showing that Witten’s equation admits a spinor solution satisfying
the proposed nonlinear boundary conditions.

1 Introduction

In General Relativity there is substantial interest in extending Witten’s spinor proof for pos-
itivity of the ADM mass [1, 2] in asymptotically flat spacetimes to the setting of a quasilocal
mass for spacelike 2-surfaces. Two major difficulties with such a proof have been, firstly,
how to relate the 2-surface side of the Sen-Witten spinor identity to a well-defined quasilo-
cal mass or energy expression with satisfactory properties [3]; and secondly, what boundary
conditions to impose in Witten’s equation on the spinor at the 2-surface. Resolving these
obstacles could provide a new proof of positivity for some of the several known quasilo-
cal mass-energy definitions (see [4] for a comprehensive review) or perhaps even suggest a
more fully satisfactory definition based directly on spinors.

In this paper, a formal spinor derivation is presented for quasilocal mean-curvature mass
and its variants studied in recent work [5–10]. The key ideas here will involve the intro-
duction of nonlinear boundary conditions for Witten’s equation that are related to the Dirac
current of the spinor at the 2-surface and also to the tangential flux of a Dirac operator on the
2-surface, combined with a spin basis adapted to the mean curvature frame of the 2-surface
normal bundle, which will be used for evaluating the Sen-Witten identity in Sect. 2. Re-
marks toward a positivity argument are made in Sect. 3, by showing that the positivity of the
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mean-curvature mass reduces to existence of a spinor solution of Witten’s equation subject
to the proposed nonlinear boundary conditions on a spacelike hypersurface that spans the
2-surface. This argument extends to a Hamiltonian form of mean-curvature mass discussed
in Sect. 4. In addition, the standard treatment of horizons as inner boundaries for Witten’s
equation using chiral boundary conditions [11] (at the horizon) is shown to carry through in
the present setting for mean-curvature mass in Sect. 5.

By way of concluding remarks in Sect. 6, a link is pointed out between mean-curvature
mass and a positive quasilocal spinorial mass defined by introducing a mean curvature vari-
ant of chiral boundary conditions (in place of the previous nonlinear boundary conditions)
for which the existence and uniqueness of solutions of Witten’s equation can be rigorously
established [12].

A 4-spinor formalism [11] will be used throughout, employing Dirac spinors ψ and
orthonormal frames ea and coframes ea , a = 0,1,2,3. Numerical gamma matrices γa at-
tached to an orthonormal frame will satisfy the Clifford algebra γaγb + γbγa = 2gab1 in
terms of frame components gab = diag(−1,+1,+1,+1) of the spacetime metric tensor
g = gabe

a ⊗ eb , such that γ0 is anti-hermitian while γi is hermitian. With these standard
conventions the Dirac current ψ̄γ (e)ψ ≡ −ξ(ψ) of a spinor is a timelike past-pointing
vector field such that ξ 0(ψ) = |ψ |2 is the norm of ψ , where γ (e) = γ aea is the dual to
the soldering form. The covariant derivative operator ∇ acting on spinor fields will be
given by ∇ = ∂ + 1

4γab�
ab with γab ≡ 1

2 [γa, γb] where ∂ denotes the coordinate deriva-
tive operator and �ab denotes the spin connection 1-form, given in terms of the coframe
by �a

b = ∇ae
b − ea�(deb). For a spacelike 2-surface S spanned by a smooth spacelike hy-

persurface � in a spacetime (M,g), the orthonormal frame ea will be adapted to � and
S so that e0 is normal to � and future-pointing, e1|S is orthogonal to S in � and outward
directed, ea |S is tangential to S for a = 2,3. The 2-surface metric tensor will be denoted
σ = g|S = gab(e

a ⊗ eb)|S . Spacetime coordinates will also be adapted to � and S by use
of a coordinate derivative ∂� on � and its restriction ∂S on S. (In general subscripts S,�

will denote a restriction to tangent spaces T (S), T (�) or cotangent spaces T ∗(S), T ∗(�),
as appropriate.)

2 Mean-Curvature Mass

To proceed, introduce

H ≡ κ(e1)e1 − κ(e0)e0 (1)

which defines the mean curvature vector [10, 13, 14] of S in M , where κ(e0), κ(e1) are the
extrinsic scalar curvatures (trace of the second fundamental form) of S relative to the normal
frame {e0, e1} of S, and write [10]

H⊥ ≡ κ(e1)e0 − κ(e0)e1 = ∗H (2)

for the dual of H in the normal space of S. The absolute norm

|H | = |H⊥| ≡
√

|κ(e1)2 − κ(e0)2| (3)

defines the scalar mean curvature of S in M . Note the vectors H,H⊥, as well as the scalar
|H |, are independent of choice of a normal frame (they display invariance under boosts
and reflections of e0, e1) and hence are geometrically well-defined given just the 2-surface
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and its extrinsic geometry in spacetime. These vectors satisfy the convention that if M is
Minkowski space and S is a convex 2-surface lying in a spacelike hyperplane then H is
spacelike and outward directed, while H⊥ is timelike and future-pointing, and the norm of
H agrees with the Euclidean mean curvature of S. An important geometric property of H⊥
is that S has no expansion in this direction in spacetime

κ(H⊥) = 1

2
tr(£H⊥σ) = 0, (4)

namely the extrinsic scalar curvature of S in the H⊥ direction vanishes, while the extrinsic
scalar curvature of S in the direction orthogonal to H⊥ is given by the norm of H ,

κ(H) = 1

2
tr(£H σ) = H · H. (5)

Hereafter S is assumed to have H spacelike, so H⊥ is timelike and |H | = √
H · H = |H⊥| =√−H⊥ · H⊥ is non-negative.

The quasilocal mean-curvature mass of S is defined by the surface integral

E(S;σ) ≡ 1

8π

∫

S

(|H |flat − |H |)dS (6)

where |H |flat is the Euclidean mean curvature given by an isometric embedding of (S,σ )

into a spacelike hyperplane in Minkowski space. (By Weyl’s theorem [15], such an em-
bedding exists and is unique up to rigid motions if S has positive Gaussian curvature.) As
shown in recent work [10], this mass has good geometric properties: it agrees with the
ADM mass in a large sphere limit at spatial infinity in asymptotically flat spacetimes, and
it is bounded below by (twice) the irreducible mass Mirr ≡ √

A/16π at apparent horizons
(namely, 2-surfaces whose scalar mean curvature vanishes, |H | = 0 on S) where A denotes
the area of S. Most importantly, the mean-curvature mass is non-negative in all spacetimes
that satisfy the dominant energy condition, as proved in [9]. This positivity indicates that
mean-curvature mass may be very useful in the context of geometric analysis problems in
General Relativity. On the other hand, the physical meaning of this mass is not so clear be-
cause it fails to vanish [4] for certain 2-surfaces (not lying in hyperplanes) in Minkowski
space.

The starting point for a spinor derivation is the Witten-Nester 2-form [1, 2, 16, 17] given
by ψ̄γ5γ (e) ∧ ∇ψ , where γ (e) = eaγa is the soldering form, and γ5 ≡ γ0γ1γ2γ3. Write

∇� = ∂� + 1

4
γab�

ab
� , D = ∂S + 1

4
γab�

ab

S (7)

respectively for the spatial covariant derivative and the 2-surface intrinsic covariant deriv-
ative acting on spinors; a slash will be used to denote the contraction of these derivative
operators with the soldering form γ (e). Likewise

∇/ S ≡ γ a∇a = D/ + 1

2
κ(e0)γ

0 + 1

2
κ(e1)γ

1 + �a(e)γ
aγ 1γ 0 (8)

denotes a Dirac operator associated to S as a 2-surface sitting in M . Recall, κ(e0) ≡ ea ·∇ae0

and κ(e1) ≡ ea ·∇ae1 are the extrinsic scalar curvatures of S in the normal directions {e0, e1},
and �a(e) ≡ e1 ·∇ae0 is the twist of the normal frame in the tangential directions {ea}. Then,
for any smooth spinor ψ and smooth hypersurface � with a 2-surface boundary S = ∂�,
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integration of the Witten-Nester 2-form over S followed by use of Stokes’ theorem, along
with some gamma matrix algebra, gives the well-known Sen-Witten identity:

∫

S

(ψ†γ 1∇/ Sψ +c.c.)dS = 2
∫

�

(−∇�ψ† ·∇�ψ +T0aψ
†γ 0γ aψ + (∇/ �ψ)†(∇/ �ψ))d� (9)

(c.c. stands for the complex conjugate of the preceding term) where

8πTab ≡ Ric(ea, eb) − 1

2
gabR (10)

defines the stress-energy of (M,g) in terms of the spacetime Ricci curvature tensor, with
R = gab Ric(ea, eb) being the scalar curvature.

For the sequel it will be natural to introduce the following geometric spinor operators
(see [4, 12] for a summary of relevant mathematical background):

D- a ≡ Da + 1

2
γ 1γ 0�a(e) (11)

is a linear combination of the spinorial edth operators [11, 18]; and

D\ ≡ γ 1γ aDa, D-\ ≡ γ 1γ aD- a (12)

are boundary flux operators related to the Dirac operator in Witten’s equation [11, 19] as seen
later. (Note that γ 1γ a gives an alternate representation of the Clifford algebra over T (S), the
more obvious representation being γ a induced from the Clifford algebra over T (M).) These
operators D-\ and D\ are frame-invariant and depend just on the intrinsic geometry of S.

Now let �⊥ be a smooth spacelike hypersurface spanning S such that it is orthogonal
to the dual mean curvature vector H⊥ at S in M . The corresponding adapted orthonormal
frame ea has e0|S = Ĥ⊥ ≡ |H |−1H⊥ normal to �⊥ at S, e1|S = Ĥ ≡ |H |−1H orthogonal to
S in �⊥, ea|S tangential to S as before; this frame will be distinguished by placing a hat atop
frame-dependent spinor operators, vectors and 1-forms. Let

� ≡ �̂ (e) = (Ĥ · ∇aĤ⊥)ea (13)

which denotes the twist covector of the mean curvature frame of S. In this geometrically
preferred frame the covariant edth operator and boundary flux operator are given by

D̂- = D + 1

2
γ 1γ 0�, D̂-\ = γ 1γ aD̂- a, (14)

while the boundary Dirac operator takes the form

∇/ S = γ 1

(
D̂-\ + 1

2
|H |

)
(15)

due to the property (4) of the mean curvature frame. In particular, D̂- , D̂-\ , and �,H,H⊥
all are geometrically well-defined given just the 2-surface S and its extrinsic geometry in
spacetime. The Sen-Witten identity now becomes

∫

S

(ψ†D̂-\ψ + c.c. + |H ||ψ |2)dS = −2
∫

�⊥
(|∇�ψ |2 − ξ(ψ) · T0 − |∇/ �ψ |2)d� (16)
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with |∇�ψ | ≡ √∇�ψ† · ∇�ψ and

T0 ≡ T a
0 ea, ξ(ψ) ≡ −ψ̄γ aeaψ, (17)

as defined in the adapted orthonormal frame.
The aim is now to relate the surface integral terms in the spinor identity (16) to a quasi-

local mass expression. This will be accomplished through considering the tangential Dirac
current

ξ‖(ψS) ≡ −(ψ̄γ aeaψ)|S (18)

and the tangential flux

F(ψS) ≡ (ψ†D\ψ)|S + c.c. (19)

of ψS ≡ ψ |S connected with an isometric embedding of S into a spacelike hyperplane
in Minkowski space. Note (∇H⊥)flat = 0 and hence (�)flat = 0 holds on the embedded
2-surface Sflat, so thus D- flat = D and (∇/ S)Mink = D/ + 1

2 |H |flatγ
1 using an orthonormal frame

(ea)Mink adapted to the hyperplane and the embedded 2-surface (whose mean curvature
frame {Ĥ⊥, Ĥ }flat then coincides with the adapted normal frame for a = 0,1 and whose
tangential frame pulls back to the one on S for a = 2,3). With respect to this embedding,
choose ψ to be a parallel (covariantly constant) spinor in Minkowski space, (∇ψ)Mink = 0,
with

ξa(ψ) = (|ψ |2,0,0,0), |ψ | = const. (20)

More geometrically, the embedded Dirac current vector of ψ at Sflat is aligned with the dual
mean curvature vector of Sflat,

(ξ(ψS) ∧ H⊥)flat = 0, (21)

and has constant absolute norm,

|ξ(ψS)| = |ψ |2 = const. (22)

Moreover, ψ satisfies the boundary Witten equation

(∇/ SψS)Mink = γ 1

(
D\ψS + 1

2
|H |flatψS

)
= 0 (23)

on the embedded 2-surface Sflat, and so the tangential flux

F(ψS) = −|H |flat|ψS |2 (24)

is a constant multiple of the Euclidean mean curvature of Sflat. Note, for comparison, the
boundary Witten equation on S itself in the spacetime M would look like

∇/ Sφ = D/ φ + 1

2
κ(e1)γ

1φ + 1

2
κ(e0)γ

0φ + �a(e)γ
aγ 1γ 0φ

= γ 1

(
D-\φ + 1

2
κ(e1)φ + 1

2
κ(e0)γ

1γ 0φ

)
= 0 (25)
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relative to a general orthonormal frame ea , for any spinor φ. Now, substitution of (22)
and (24) into the Sen-Witten identity (16) yields a main result:

∫

S

ψ†D̂-\ψ + c.c. + |H ||ψ |2dS =
∫

S

(F(ψS) + � · ξ‖(ψS) + |H ||ξ(ψS)|)dS

= −|ψS |2
∫

S

(|H |flat − |H |)dS, |ψS | = const. (26)

Note there is no loss of generality in scaling ψ by a constant factor so that |ψS | = 1.

Theorem 1 Let S be a spacelike 2-surface whose mean curvature vector H is spacelike
and whose Gaussian curvature is positive. Fix a Dirac spinor ψ in Minkowski space sat-
isfying boundary conditions F(ψS) = −|H |flat, ξ‖(ψS) = 0, and |ψS | = 1 on S embedded
into a spacelike hyperplane. (In particular such boundary conditions hold when ψ is any
parallel spinor, (∇ψ)flat = 0, aligned and normalized so that ξ(ψS)flat = (Ĥ⊥)flat holds in
the embedding.) Then the surface integral terms in the Sen-Witten identity are a multiple of
the mean-curvature mass (6) of S:

8πE(S;σ) = −
∫

S

ψ†D̂-\ψ + c.c. + |H ||ψ |2dS. (27)

3 Remarks on Positivity

This spinor derivation of the mean curvature mass allows the possibility of modifying Wit-
ten’s positivity argument as follows. Impose on ψ the Witten equation

∇/ �ψ = 0 (28)

subject to the nonlinear boundary conditions

F(ψS) = F(φ) = −|H |flat, (29)

ξ‖(ψS) = ξ‖(φ) = 0, (30)

|ψS | = |φ| = 1, (31)

under the isometric embedding of (S,σ ) into a spacelike hyperplane in Minkowski space,
where φ is the restriction to S of a parallel spinor whose Dirac current vector is aligned
with the dual mean curvature vector of S in the embedding, ξ̂ (φ)flat = (Ĥ⊥)flat. Note φ then
satisfies the boundary Witten equation (in Minkowski space)

(∇/ Sφ)Mink = γ 1

(
D\φ + 1

2
|H |flatφ

)
= 0 (32)

such that the boundary Dirac current vector has unit absolute norm

|ξ(φ)| = |φ|2 = 1. (33)

These boundary conditions specify the tangential Dirac current of ψ on S and the tangen-
tial flux of ψ on S, along with the norm of ψ (which is given by the projection of the Dirac
current vector of ψ in the timelike mean curvature direction H⊥ at S, ξ̂ (ψS) · Ĥ⊥ = −|ψS |2).
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The boundary value problem given by (28–31) on ψ constitutes a first-order elliptic PDE
system with the right number of boundary conditions (half of the degrees of freedom of
the spinor). To give a more rigorous indication of well-posedness, it would be natural to
first study the linearized equations as obtained in a weak gravitational limit (where the
spacetime metric is a perturbation of the Minkowski metric). This would yield a linear,
non-homogeneous boundary value problem in Minkowski space to which standard Green’s
function techniques could be applied to verify if there exist solutions ψ . Such an analysis
will be left for investigation elsewhere, and the rest of the argument will now be formal.

From Witten’s equation (28) in the nonlinear boundary value problem, since the hyper-
surface �⊥ is orthogonal to the timelike mean curvature normal of S, the normal covariant
derivative of ψ at S in �⊥ is given by

(∇1ψ)|S = −γ 1∇/ SψS = −
(
D̂-\ψS + 1

2
|H |ψS

)
(34)

and consequently the normal flux of ψ on S is precisely the same as the Sen-Witten surface
integral density expression. In particular, under the boundary conditions (29–31),

(ψ†∇1ψ)|S + c.c. = −(ψ
†
S D̂-\ψS + c.c. + |H ||ψS |2) = |H |flat − |H | (35)

so thus the normal flux of ψ on S is equal to the difference of the scalar mean curvature of S

(as a 2-surface in M) and the Euclidean mean curvature of S (as an embedded 2-surface in
Minkowski space).

As a result the spinor derivation of mean-curvature mass (27) holds (similarly to The-
orem 1) and is directly related to the normal flux of the spinor in Witten’s equation at the
2-surface in spacetime. Then (16) and (28) yield

8πE(S;σ) = 2
∫

�⊥
(|∇�ψ |2 − ξ(ψ) · T0)d� ≥ 0 (36)

since

−ξ(ψ) · T0 ≥ 0 (37)

if the local energy-momentum vector field T0 associated with �⊥ is timelike and future-
pointing (which is just the dominant energy condition [20, 21] on the spacetime stress-
energy tensor Tab).

Proposition 2 Let S be a 2-surface as in Theorem 1. If a smooth solution ψ of the Witten
equation (28) exists satisfying the nonlinear boundary conditions (29–31) on a hypersur-
face �⊥ spanning S then the mean-curvature mass (6) of S is non-negative provided the
spacetime (M,g) obeys the dominant energy condition.

4 Twist-Free 2-Surfaces and Mean-Curvature Mass

A 2-surface S is said to be convex if its mean curvature vector H is spacelike, or equivalently
the dual mean curvature vector H⊥ is timelike; and said to be twist-free if the twist of these
normal vectors �a(H) = H · ∇aH⊥ vanishes, so therefore a convex twist-free S possesses

a mean curvature normal frame {Ĥ⊥, Ĥ } whose twist is zero, � = 0.
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For any such 2-surface, an elegant version of the spinor derivation can be formulated
using SU(2) spinors on a maximal spacelike hypersurface �. Firstly, recall that the Witten
equation on a maximal hypersurface reduces to the 3-dimensional Witten equation by means
of the spatial Dirac operator decomposition

∇/ � = D/ + 1

2
γ 0 tr(K(e0)) (38)

with D = ∂� + 1
4γij�

ij

� being the hypersurface covariant derivative, where h = g|S =
gij (e

i ⊗ ej )|� is the spatial metric tensor in terms of the spatial coframe ei , i = 1,2,3,
intrinsic to (�,h), and where K(e0) = 1

2 £e0h is the second fundamental form of � in terms
of the spatial metric h. Here D/ is the spatial (3-dimensional) Dirac operator associated to �.
Secondly, recall that SU(2) spinors, ψ� , on a spacelike hypersurface are defined via pro-
jection operators P0± = 1

2 (1 ± iγ 0) by the conditions P0+ψ = ψ or equivalently P0−ψ = 0
applied to a Dirac spinor ψ [21, 22]. This projection reduces the number of linearly indepen-
dent real components of ψ� to four. A key property of these spinors is their compatibility
with the spatial Dirac operator,

D/P0
± = P0

∓D/ , (39)

as seen by using [P0±, γ 0] = 0 and = P0±γ i − γ iP0∓ = 0.
To set up the derivation of the mean-curvature mass, assume S is spanned by a maximal

spacelike hypersurface �⊥ orthogonal to H⊥ at S. Suppose there exists an SU(2) spinor ψ�

satisfying the spatial Witten equation

D/ ψ� = 0 (40)

and nonlinear boundary conditions (29) and (31) under an isometric embedding of (S,σ )

into a spacelike hyperplane in Minkowski space, where ψS is the restriction of ψ� to S. Here
φ is a parallel SU(2) spinor in Minkowski space, (∇φ)Mink = 0, with its Dirac current vector
aligned with the dual mean curvature vector of S in the embedding, ξ(φ)flat = (Ĥ⊥)flat. As
before, φ thus satisfies the embedded boundary Witten equation (32) with the boundary
Dirac current obeying the normalization (33).

The elegance of SU(2) spinors now comes into play in linking the Sen-Witten identity to
the mean-curvature mass in a Hamiltonian form [10] as follows. First, using the projection
operators it can be easily shown that the Dirac current of ψ� is orthogonal to �⊥,

ξ(ψ�) = |ψ� |2e0. (41)

This identity gives a simple spinor parametrization of the timelike mean curvature vector of
S since e0|S = Ĥ⊥.

Theorem 3 On a convex twist-free spacelike 2-surface S = ∂�⊥, the surface integral terms
in the Sen-Witten identity on ψ� subject to boundary conditions (29) and (31) in the adapted
mean curvature frame are given by

−
∫

S

(ψ�
†D̂/ ψ� + c.c. + |H ||ψ� |2)dS =

∫

S

(|H |flat − |H |)dS =
∫

S

ξ · P dS −
∫

S

(ξ · P )flatdS

(42)
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where P ≡ H⊥ + � is the symplectic vector [23, 24] in a Hamiltonian formulation of the
Einstein gravitational field equations using a geometric time flow vector field [10] which is
given at S by the timelike mean curvature vector ξ ≡ ξ̂ (ψS) = Ĥ⊥.

A positivity analysis is now possible from considering (16), (40) and (42), together with
the fact that D/ = ∇/ � since �⊥ is a maximal hypersurface. This yields the inequality

8πE(S;σ) = 2
∫

�⊥
(|∇�ψ� |2 + T00|ψ� |2)d� ≥ 0 (43)

whenever T00 ≥ 0 (which is the weak energy condition [20, 21] on the stress-energy ten-
sor Tab).

Proposition 4 Let S be a convex twist-free spacelike 2-surface with positive Gaussian cur-
vature, spanned by an adapted maximal spacelike hypersurface �⊥ in spacetime (M,g). If
the spatial Dirac boundary value problem (40), (29) and (31) possesses a smooth SU(2)

spinor solution ψ� , then the mean-curvature mass (6) is non-negative provided the weak
energy condition holds on (M,g).

Compared with Proposition 2, here a weaker energy condition is sufficient for positivity,
since the Dirac current (41) for SU(2) spinors is hypersurface orthogonal, but there is a
stronger restriction on the 2-surface S.

5 Horizons and Chiral Boundary Conditions

In the positivity analysis, if a hypersurface � contains an apparent horizon inside S then the
horizon 2-surface should be treated as an inner boundary (∂�)hor, which is characterized by
the vanishing of its scalar mean curvature, |H |hor = 0. On such hypersurfaces, the boundary
value problem (28–31) needs to be supplemented by imposing the standard horizon bound-
ary condition [11] γ 1γ 0ψ |hor = ψ |hor on the Dirac spinor in Witten’s equation, in terms of
an orthonormal frame adapted to (∂�)hor.

This boundary condition arises from the introduction of chiral projection operators

P± = 1

2
(1 ± γ 1γ 0) (44)

characterized by the properties [P±, γ a] = 0, P±γ 1 = γ 1P∓, P±γ 0 = γ 0P∓, in addition to
P2± = P±, P+P− = 0, and P†

± = P±. Relative to the decomposition ψ = ψ+ + ψ− given by
ψ± ≡ P±ψ , the surface integral terms in the Sen-Witten identity look like

∫

S

2ψ†
+D-\ψ− + c.c. + |H |(|ψ+|2 + |ψ−|2)dS (45)

after integration by parts with respect to D-\ , discarding a total divergence on S (by Stokes’
theorem). Hence at a horizon S = (∂�)hor, the flux terms vanish under the boundary condi-
tion ψ−|hor = 0, while the mean curvature terms are zero due to |H |hor = 0, as first shown in
[11]. Consequently, the horizon boundary condition implies that the inner boundary makes
no contribution to the quasilocal mass so that the positivity analysis leading to Propositions 2
and 4 goes through as before.
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6 Some Concluding Remarks on Quasilocal Spinorial Mass

It is natural to explore a spinor derivation and positivity analysis of mean-curvature mass
based on a chiral boundary condition in place of the nonlinear boundary conditions inves-
tigated so far. Let P̂± denote the chiral projection operators adapted to the mean curvature
frame of a 2-surface S and consider

ψ−|S = φ−|S (46)

where, in a Euclidean embedding of (S,σ ) into a spacelike hyperplane in Minkowski space,
φ is a parallel Dirac spinor whose Dirac current is aligned with the timelike mean curvature
vector of S,

ξ(φ) = (Ĥ⊥)flat. (47)

Note [P̂±,D/ ] = 0 shows that φ± obeys the boundary Witten equation

P̂∓(∇/ Sφ)Mink = γ 1

(
D\φ∓ + 1

2
|H |flatφ±

)
= 0. (48)

Also note, as a consequence of the alignment (47), that

|φ+| = |φ−| = 1√
2

(49)

since 0 = ξ 1(φ) = (Ĥ )flat · ξ(φ) = −φ†γ 0γ 1φ = φ†(P̂+ − P̂−)φ = |φ+|2 − |φ−|2 while 1 =
ξ 0(φ)flat = |φ|2 = |φ+|2 + |φ−|2.

Witten’s equation (28) with this chiral boundary condition (46) is an elliptic boundary
value problem for the Dirac spinor

χ = ψ − φ, χ−|S = 0, (50)

satisfying the equation

∇/ �χ = −∇/ �φ− = −�φ (51)

where � is a certain gamma matrix operator that vanishes in Minkowski space, (�)Mink = 0.
Existence and uniqueness of solutions χ is rigorously established by the general results
stated in [12] for boundary value problems of this kind. It is important to note that, in partic-
ular, there are no zero modes for the boundary value problem (50, 51), since if χ0 satisfies
∇/ �χ0 = 0 on a hypersurface � with χ−|S = 0 at a boundary S = ∂�, then the Sen-Witten
identity evaluated for χ0 yields

∫
�

|∇�χ0|2d� = ∫
�

ξ(χ0) · T0d� ≤ 0 provided the domi-
nant energy condition holds on �. This inequality implies ∇�χ0 = 0 so then χ0|� must be
a spatially parallel spinor which vanishes due to the chiral boundary condition.

To proceed, let ψ be the unique solution of the boundary value problem (50, 51), and
consider the surface integral terms in the Sen-Witten identity (16). Use of the boundary
Witten equation (48) for φ− gives (ψ

†
+D/ ψ−)|S = (ψ

†
+D/ φ−)|S = − 1

2 |H |flat(ψ
†
+φ+)|S for the

flux terms. The complete Sen-Witten identity then yields the expression

8πẼ(S;σ,ψ) ≡
∫

S

((ψ†
+φ+ + c.c.)|H |flat − (|ψ+|2 + |φ+|2)|H |

+ (ψ†
+γ 0γ aφ− + c.c.)�a)dS ≥ 0 (52)
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assuming the dominant energy condition holds on �. The surface integral (52) defines a
purely spinorial quasilocal mass Ẽ(S;σ,ψ) which can be naturally viewed as a chiral vari-
ant of the mean-curvature mass of S. Interestingly, this variant expression is rigorously pos-
itive and should have some good properties as a quasilocal mass. In any case, its positivity
may perhaps provide a link to the known positivity [9] of mean-curvature mass.

As it stands, however this positivity property (52) gives only a lower bound on the mean-
curvature mass

4πE(S;σ) = 1

2

∫

S

(|H |flat − |H |)dS ≥ −
∫

S

|ψ+|2(|H |flat − |H |) + |ψ+||� |dS (53)

which follows from the elementary estimates ψ
†
+φ+ + c.c. ≤ |ψ+|2 + |φ+|2 and

ψ
†
+γ 0γ aφ−�a ≤ |ψ+||φ−||� |, combined with the normalizations (49). A slightly more

satisfactory result can be obtained if S is restricted to be twist-free, in which case the twist
term will drop out of the inequality (52).

Lemma 5 Suppose S is twist-free in spacetime and let ψ+|S be the boundary value of the
solution of Witten’s equation (28) with the mean curvature chiral boundary condition (46),
under a Euclidean embedding of S. Then the mean curvature of S obeys the inequality

∫

S

(
1

2
+ |ψ+|2

)
(|H |flat − |H |)dS = 8πẼ(S;σ,ψ) ≥ 0. (54)

This inequality would directly imply positivity of the mean-curvature mass E(S;σ) for
twist-free 2-surfaces S if the boundary value ψ+|S has constant norm on S. A similar con-
clusion would follow from the more general inequality (52) under stronger conditions on
ψ+|S (namely, if ψ+|S is equal to φ+|S so then (ψ+γ 0γ aφ−)|S = ξa(φ−) and (ψ

†
+φ+)|S =

|φ+|2 = |φ−|2, implying the twist terms would vanish due to (ψ+γ 0γ aφ− + c.c.)|S�a =
ξ‖(φ) · � = 0 while the mean curvature terms would simplify to (|ψ+|2 +|φ+|2)|S(|H |flat −
|H |) = |H |flat − |H |). Clearly, such lines of argument will require a detailed analytical in-
vestigation of the mean curvature chiral boundary value problem for Witten’s equation.
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